本课程为精品课,您可以登录eeworld继续观看: 集成电路的功耗问题继续观看 课时1:集成电路技术的意义 课时2:开关和逻辑 课时3:静态互补CMOS逻辑原理 课时4:静态互补CMOS逻辑门的设计和本节小结 课时5:集成电路工艺 课时6:集成电路版图 课时7:Scaling Down 课时8:MOS管原理 课时9:阈值电压 课时10:MOS管的基本电流方程 课时11:沟道长度调制效应 课时12:速度饱和 课时13:MOS管的手工分析模型 课时14:MOS管的电容 课时15:体效应 课时16:短沟效应、DIBL和本节小结 课时17:亚阈值电流 课时18:栅氧漏电流 课时19:扩散区pn结漏电流 课时20:栅极感应漏端漏电与本节小结 课时21:MOS管的温度特性 课时22:电压传输特性 课时23:VTC分析方法 课时24:开关阈值电压与本节小结 课时25:单级噪声容限 课时26:电压传输特性的稳定性 课时27:多级噪声容限及本节小结 课时28:复杂逻辑门的静态特性 课时29:用于延时分析的反相器模型 课时30:反相器的驱动电阻 课时31:反相器的负载电容 课时32:门延时的组成 课时33:反相器延时的设计准则 课时34:复杂逻辑门的驱动电阻 课时35:大扇入逻辑门的尺寸设计 课时36:考虑内部节点电容的延时模型 课时37:复杂逻辑门延时与输入图形的关系 课时38:逻辑门延时模型 课时39:本征延时 课时40:努力延时 课时41:关键路径 课时42:固定级数时的逻辑路径的尺寸优化 课时43:级数可变时逻辑路径的尺寸优化 课时44:逻辑路径尺寸优化方法小结 课时45:电路级优化 课时46:逻辑结构优化 课时47:本章总结 课时48:集成电路的功耗问题 课时49:逻辑门电容充电功耗模型 课时50:开关活动性 课时51:虚假翻转 课时52:直流通路引起的功耗和本节小结 课时53:CMOS逻辑门的静态功耗分量 课时54:亚阈值漏电流功耗 课时55:堆叠效应 课时56:本节小结 课时57:功耗优化指标 课时58:电源电压优化 课时59:VDD-尺寸的联合优化 课时60:VDD-VT联合优化 课时61:集成电路中的导线 课时62:互连线的寄生电容 课时63:互连线的寄生电阻 课时64:电感的影响和寄生效应小结 课时65:集总电容模型 课时66:分布rc模型 课时67:考虑互连线延时的电路延时 课时68:互连线延时的优化 课时69:电容串扰及其影响 课时70:克服电容串扰的方法 课时71:IR Drop 课时72:L(didt) 课时73:互连线的信号完整性小结 课时74:互连线的Scaling Down 课时75:组合逻辑 课时76:静态互补CMOS逻辑的特点 课时77:伪NMOS逻辑门的静态特性 课时78:伪NMOS逻辑门的传播延时 课时79:伪NMOS逻辑门的功耗与特点 课时80:差分串联电压开关逻辑 课时81:传输管逻辑的工作原理 课时82:传输管逻辑的延时和功耗 课时83:电平恢复技术 课时84:低阈值传输管 课时85:CMOS传输门 课时86:传输管逻辑信号的完整性问题 课时87:动态逻辑 课时88:动态逻辑基本原理 课时89:串联动态门 课时90:动态逻辑的速度 课时91:动态逻辑的功耗 课时92:电荷泄漏 课时93:电荷共享 课时94:电容耦合 课时95:组合逻辑类型的选择 课时96:时序逻辑和时序单元 课时97:双稳态原理 课时98:锁存器 课时99:主从边沿触发寄存器 课时100:时序参数的定义 课时101:时序参数对同步系统的影响 课时102:动态时序单元 课时103:本章总结 课时104:同步时序 课时105:时钟系统 课时106:时钟偏差 课时107:时钟抖动 课时108:时钟偏差和抖动的来源 课时109:减小时钟偏差和抖动的技术 课时110:时钟树 课时111:时钟技术小结 课时112:数据通路的特点 课时113:数字电路中的加法运算 课时114:静态互补CMOS全加器 课时115:静态互补CMOS全加器 课时116:传输管逻辑全加器 课时117:动态逻辑全加器 课时118:进位选择加法器 课时119:超前进位加法器 课时120:树形加法器 课时121:数字电路中的乘法运算 课时122:部分积产生 课时123:部分积累加 课时124:乘法器小结 课时125:本章小结 课程介绍共计125课时,1天5小时40分56秒 数字超大规模集成电路设计 清华大学 李翔宇 《数字大规模集成电路》是讲授数字大规模集成电路基础理论和知识的微电子专业研究生基础课,既是微电子专业学生的核心课程也是供电类专业学生学习数字集成电路设计的基础课程。课程以纳米和深亚微米CMOS工艺条件、系统级集成水平下的数字电路原理和设计技术为主要内容,具体包括器件和互连线的特性与模型、数字VLSI的关键指标与优化方法,常见逻辑类型、基本功能单元、重要片内子系统(时钟、电源网络)的工作原理和设计方法等。通过这门课的学习你可以理解如何用MOS管实现复杂的数字芯片、真正的数字集成电路和理想的数字电路之间有哪些差别、芯片的速度、功耗、鲁棒性、成本等方面的特性与哪些因素有关、又如何优化。 上传者:Lemontree 猜你喜欢 2016 TI 电池管理及Type C研讨会 (上) 赛灵思培训资源介绍 智慧医疗 - 医疗监护、可穿戴式设备及手提超声探头 直播回放: Microchip - 微处理器的安全引导 北京理工大学作品——小车绘制“中国梦” EZ-BLE PRoC低功耗蓝牙模块介绍 无刷电机教程 磁场简介:第一部分 热门下载 电源入门小知识 微机原理与接口技术课程设计题目详细要求 一种模拟电路故障诊断方法 物联网汇总 Telit-GSM-GPRS-CDMA-WCDMA-Modu 华为硬件工程师手册 MFRC522中文手册 实用电子元器件与电路基础 (施瓦茨) 10个常见的镜头术语 ANTENNA NEAR FIELD 热门帖子 百问FB网络编程 - TCP编程简单示例 ##6.4TCP编程简单示例​服务器首先进行初始化操作:调用函数socket创建一个套接字,函数bind将这个套接字与服务器的公认地址绑定在一起,函数listen将这个套接字换成倾听套接字,然后调用函数accept来等待客户机的请求。过了一段时间后,客户机启动,调用socket创建一个套接字,然后调用函数connect来与服务器建立连接。连接建立之后,客户机和服务器通过读、写套接字来进行通信。###6.**4.1**服务器端代码参考:TCP/serve aleksib 太阳能LED照明系统优化后各电路中MOS管的VBA1302 太阳能LED照明系统的应用意义在世界各国,对绿色环保能源的需求趋势都与日俱增,越来越多行业开始重视环保元素在其行业内的发展潜力。太阳能作为一种现知的用途最为广泛的可再生能源,它在绿色产业中占有重要地位。太阳能与LED的结合,使太阳能LED照明系统具有了绿色环保和高效率的双重优点,促进这类系统的普及,对缓解能源短缺有重大意义,也符合绿色生态友好的行业发展趋势。 VBsemi 黄金搭档!RS485与Modbus还可以这样用? 在工业现场,Modbus设备与RS485的搭配无疑成为了自动化和通信领域的黄金搭档,两者相辅相成,成为业界公认的经典组合。这一黄金组合不仅广泛普及,而且相互强化,共同构筑了一个可靠、稳定且经济实惠的通信解决方案,为工业自动化带来了显著的便利和可靠性。RS485(RecommendedStandard485)RS485是一种差分信号传输标准,用于在多点网络中实现数据通信。它支持多主多从的通信模式,最多可以连接128个节点(可以使用中继器扩展到更多节点)。特点:1.差分信号 2020da 【为C2000做贡献】基于ADS8482与TMS320F28335的信号采集系统 基于ADS8482与TMS320F28335的信号采集系统【为C2000做贡献】基于ADS8482与TMS320F28335的信号采集系统论文?收藏学习!学习学习 0212009623 Cortex-M 片上仿真技术手册 Cortex-MTechnicalNotes:CortexMOn-ChipEmulation下载地址:http://download.eeworld.com.cn/detail/rain_noise/548559Cortex-M片上仿真技术手册不理解啥叫Cortex-M的片上仿真,是基于FPGA的吗?能给点介绍就好了。 rain_noise [企业介绍]松下,Panasonic 松下公司(Panasonic),是日本的一个跨国性公司,在全世界设有230多家公司,员工总数超过290,493人。其中在中国有54,000多人。2001年全年的销售总额为610多亿美元,为世界制造业500强的第26名。Panasonic的中文为“松下”(早期叫National,1986年开始逐步更改为Panasonic,2008年10月1日起全部统一为Panasonic)由日本松下电器产业株式会社自1918年松下幸之助创业,发展品牌产品涉及家电、数码视听电子、办公产品、航空等诸多领域而享誉全球 Sur 网友正在看 大功率器件 压接型 IEGT (b) WALL RECEPTACLE OUTLETS - 210.52(A)(1) THRU (A)(4) 二极管门电路的缺点 模型功能的自动测试便利化方案 二极管的单向导电 第10讲 角度调制的基本概念和频谱特性 电子测量原理42 总线与信号线之间该如何进行连接呢?