本课程为精品课,您可以登录eeworld继续观看: 脉冲传递函数(一)继续观看 课时1:绪论 课时2:拉普拉斯变换定义及性质(一) 课时3:拉普拉斯变换定义及性质(二) 课时4:卷积定义、定理及性质 课时5:拉普拉斯逆变换及应用(一):拉普拉斯逆变换定义 课时6:拉普拉斯逆变换及应用(二):拉普拉斯逆变换应用 课时7:控制的基本概念 课时8:控制系统的微分方程描述(一) 课时9:控制系统的微分方程描述(二) 课时10:控制系统的传递函数描述(一):Laplace变换知识回顾 课时11:控制系统的传递函数描述(二):控制系统的传递函数描述 课时12:框图及其变换(一):传递函数框图定义及连接方式 课时13:框图及其变换(二):传递函数框图变换 课时14:信号流图 课时15:控制系统的基本单元 课时16:非线性单元的线性化 课时17:稳定性 课时18:稳定的Liapunov定义 课时19:稳定性的代数判据(一):Routh判据 课时20:稳定性的代数判据(二):系统稳定的必要条件 课时21:参数稳定性,参数稳定域 课时22:静态误差(一):误差和静态误差定义 课时23:静态误差(二):静态误差与输入 课时24:静态误差(三):静态误差的计算 课时25:静态误差(四):系统类型与静态误差的关系 课时26:静态误差(五):静态误差的物理和理论解释 课时27:静态误差(六):扰动引起的静态误差 课时28:动态性能指标 课时29:高阶系统动态性能的二阶近似 课时30:控制系统的校正 课时31:频率特性引言 课时32:Fourier变换 课时33:频率特性函数 课时34:频率特性的图像 课时35:基本环节的频率特性 课时36:复杂频率特性的绘制(一) 课时37:复杂频率特性的绘制(二) 课时38:复杂频率特性的绘制(三) 课时39:闭环频率特性 课时40:Nyquist稳定判据(一) 课时41:Nyquist稳定判据(二) 课时42:Nyquist稳定判据(三) 课时43:相对稳定性(稳定裕量) 课时44:从开环频率特性研究闭环系统性能 课时45:基于频率特性的控制器设计思路 课时46:根轨迹方法简介 课时47:根轨迹条件 课时48:根轨迹性质 课时49: 频率特性的图像 课时50:条件稳定系统 课时51:零极点对根轨迹的影响 课时52:参数根轨迹和根轨迹族 课时53:延时系统的根轨迹 课时54:补根轨迹与全根轨迹 课时55:校正问题及其实现方式. 课时56:校正装置的设计方法 课时57:超前校正装置的特性 课时58:基于根轨迹法设计超前校正装置 课时59:基于Bode图设计超前校正装置 课时60:滞后校正装置的特性 课时61:基于根轨迹法设计滞后校正装置 课时62:基于Bode 图设计滞后校正装置 课时63:超前-滞后校正装置的特性 课时64:基于根轨迹法设计超前-滞后校正 课时65:基于Bode图设计超前-滞后校正 课时66:开环系统的期望频率特性 课时67:反馈校正 课时68:直线倒立摆控制系统实验 课时69:非线性系统概述 课时70:非线性系统的典型动力学特征 课时71:描述函数法定义 课时72:描述函数法求取 课时73:基于描述函数的稳定性分析 课时74:非线性系统自持振荡的分析 课时75:相平面与相轨迹 课时76:相轨迹的绘制方法 课时77:奇点 课时78:线性系统的相平面分析 课时79:非线性系统的相平面分析 课时80:极限环及其产生条件 课时81:非线性系统分析小结 课时82:采样控制系统概述 课时83:脉冲采样与理想采样 课时84:采样定理 课时85:零阶保持器 课时86:z-变换 课时87:脉冲传递函数(一) 课时88:脉冲传递函数(二):求脉冲传递函数的一般方法 课时89:z-平面上采样系统的稳定性分析 课时90:w-平面上采样系统的稳定性分析 课时91:采样控制系统的时域分析 课时92:修正的z-变换 课时93:状态、状态空间、状态空间描述 课时94:高阶微分方程、传递函数矩阵与状态方程的互相转换(一):多输入多输出系统的空间表达式及传递函数阵 课时95:高阶微分方程、传递函数矩阵与状态方程的互相转换(二):组合系统的空间表达式及传递函数阵 课时96:高阶微分方程、传递函数矩阵与状态方程的互相转换(三):系统的时域描述及状态空间表达式(一) 课时97:高阶微分方程、传递函数矩阵与状态方程的互相转换(四):系统的时域描述及状态空间表达式(二) 课时98:由模拟结构图写出状态空间表达式(一):基于串并联分解 课时99:由模拟结构图写出状态空间表达式(二):基于部分分式分解 课时100:由模拟结构图写出状态空间表达式(三):基于积分器串+常值反馈 课时101:系统的等价变换及其应用(一) 课时102:系统的等价变换及其应用(二) 课时103:线性连续定常系统状态方程的解(一):齐次方程 课时104:线性连续定常系统状态方程的解(二):非齐次方程 课时105:状态转移矩阵的定义、性质及算法(一):状态转移矩阵的定义 课时106:状态转移矩阵的定义、性质及算法(二):状态转移矩阵的性质 课时107:状态转移矩阵的定义、性质及算法(三):状态转移矩阵的算法 课时108:能控性与能观测性的定义(一):能控性与能观性 课时109:能控性与能观测性的定义(二):能控性概念 课时110:能控性与能观测性的定义(三):能观性概念 课时111:能控性与能观测性的判据(一):状态能控判据形式之一(模态判据) 课时112:能控性与能观测性的判据(二):状态能控判据形式之二(代数判据) 课时113:能控性与能观测性的判据(三):状态能观判据形式之一(模态判据) 课时114:能控性与能观测性的判据(四):状态能观判据形式之二(代数判据) 课时115:对偶性原理 课时116:定常系统的状态空间结构(一):能控状态分解 课时117:定常系统的状态空间结构(二):能观状态分解 课时118:能控标准型和能观标准型:能控标准型和能观标准型 课时119:实现问题、最小实现(一):单变量系统的能控实现、能观实现 课时120:实现问题、最小实现(二):多变量系统的能控实现、能观实现 课时121:实现问题、最小实现(三):最小实现问题 课时122:状态反馈和输出反馈 课时123:反馈对能控性和能观测性的影响 课时124:极点配置算法(一):极点配置算法 课时125:极点配置算法(二):极点配置举例 课时126:极点配置算法(三):极点配置算法 课时127:状态空间中系统的镇定问题 课时128:状态观测器的基本概念 课时129:全维观测器的设计 课时130:降维观测器 课时131:重构状态反馈控制系统 课时132:扰动量的观测 课时133:基本概念 课时134:对外扰的完全不变性 课时135:输出对外扰的静态不变性 课时136:状态和外扰可直接测量时的抗外扰控制 课时137:带观测器的抗外扰控制 课时138:常值扰动下的鲁棒抗外扰控制 课时139:一般扰动下的鲁棒抗外扰控制 课时140:基本概念 课时141:李雅普诺夫方法 课时142:构造李雅普诺夫函数的方法 课时143:线性定常系统的稳定性 课时144:离散系统的稳定性 课程介绍共计144课时,1天10小时13分18秒 自动控制理论 清华大学 自动控制理论是自动化学科核心专业基础课,也是研究和设计复杂工程控制系统的理论基础。本课程也称为经典控制理论,包含(1)控制系统的概论,着重介绍反馈原理;(2)控制系统的建模,着重介绍微分方程及机理法建模、拉普拉斯变换、传递函数、频率响应模型、数据驱动模型和典型控制系统的组成与框图变换;(3)控制系统的分析及性能评价,包括动态系统的时间响应、结构属性、稳定性、稳态精度、动态性能和时域频域分析方法;(4)控制系统的频域设计,PID控制器及参数整定法、超前滞后校正。 上传者:JFET 猜你喜欢 手把手教你学LittleVGL 好创意,手机煮火锅,都好好吃饭,别玩儿手机! 过电流传感技术 Vishay企业介绍 领航者ZYNQ开发板视频 德州仪器 DLP<sup>®</sup> 汽车技术——DLP<sup>®</sup>抬头显示 SAM4L: picoPower TI传感器详解 热门下载 [资料]-JIS B8654-2002 Test methods for electro-hydraulic proportional series flow control valves.pdf [资料]-JIS C5401-4-001-2005 电子设备连接器.第4-001部分:有质量评定的印制电路板连接器.空白详细规范.pdf [资料]-JIS R9151-1979 硅酸盐水泥缓凝剂用石膏.pdf [资料]-JIS C3851-2012 屋内用樹脂製ポストがいし.pdf [资料]-JIS C9029-2-9-2006 移动式电动工具的安全.第2-9部分斜切锯的特殊要求.pdf [资料]-JIS C4212-2000 低压三相鼠笼式高效感应电动机.pdf [资料]-JIS R9301-2-2-1999 Alumina powder -- Part 2:Determination of physical properties -- 2:Angle of [资料]-JIS H7309-2006 超导性.第10部分临界温度测量.用电阻法对Nb-Ti、 Nb3Sn和铋-系统氧化物复合超导体的临界温度的测量.pdf [资料]-JIS K6404-5-1999 橡胶或塑料涂覆织物的试验方法 第5部分涂料粘性的测定.pdf [资料]-JIS T6610-2005 Dentistry-Zinc oxide-eugenol and zinc oxide-non-eugenol cements.pdf 热门帖子 浅谈什么是人工智能 人工智能(ArtificialIntelligence,简称AI)是指计算机系统能够执行通常需要人类智能才能完成的任务,例如视觉识别、语音识别、决策制定和语言翻译等。人工智能的研究和应用领域广泛,涵盖了机器人技术、自然语言处理、机器学习和深度学习等多个方面。 机器学习是人工智能的一个重要分支,它通过数据驱动的方法,使计算机能够从经验中学习并进行预测或决策。深度学习则是机器学习的一个子领域,利用多层神经网络模拟人脑的处理方式,处理复杂的数据模式。jdudoq近年来,随着计算能力的提升 sunshine199 关于ARM选型请各位大哥大姐们帮忙啊!急件啊! 公司要求:1、采用ARM7TDMI内核。2、内置以太网络控制器,一个或一个以上的串口控制器,最好带LCD没带也没关系。3、目前未停产。请问用哪个公司、什么型号的处理器啊?不胜感激啊!关于ARM选型请各位大哥大姐们帮忙啊!急件啊!只能自己顶一下啊?三星的便宜一些INTER的贵一点有的是。。。给我个明确的好吗?老大!建议上周立功的网站看看谢谢大家哈!因为项目急啊!所以公司暂时选用三星的4510哈! jamy001 我的问题有点特殊,关于framebuffer驱动 大家好,由于种种原因,公司现在用的系统内核还是linux2.0的内核(...大家不要bs),现在打算把microwin移植到lcd上面,这意味着我要先写fb驱动。现在的问题在于:配置的时候把fb选择之后内核无法编译通过。大部分原因在于console.c文件很多函数没有实现。找了2.4内核的相关实现函数copy过来又不能用。而且发现2.0的驱动和2.4有很大的区别,2.0甚至没有fbcon.c文件。搞了两个星期都没有结果,弄不清到底2.0是怎样实现的?2.0和2.4的区别在于什么地方?一点头绪 CNC 1.闪烁灯 . 实验任务如图4.1.1所示:在P1.0端口上接一个发光二极管L1,使L1在不停地一亮一灭,一亮一灭的时间间隔为0.2秒。2. 电路原理图图4.1.13. 系统板上硬件连线把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上。4. 程序设计内容(1).延时程序的设计方法作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太 99iyu 什么叫地址对准? 所谓地址对准的意义是,比如32位双字地址的最低两位是00,这样可以从32位存储器数据总线一次读出。请解释上面那句话是什么意思,不明白,什么叫地址对准什么叫地址对准?很多CPU,如基于Alpha,IA-64,MIPS,和SuperH体系的,拒绝读取未对齐数据。当一个程序要求其中之一的CPU读取未对齐数据时,这时CPU会进入异常处理状态并且通知程序不能继续执行。举个例子,在ARM,MIPS,和SH硬件平台上,当操作系统被要求存取一个未对齐数据时默认通知应用程序 sjh008 那位高手帮帮忙~~~ 跪求无线话筒的发射频率为:1~100M,通信距离大于20米,的电路图和方案论证。那位高手帮帮忙~~~ dgwing 网友正在看 FPGA簡介_微處理器與FPGA 血糖仪研讨专场 例子-复杂门等效反相器设计 数模混合信号电路设计 华清远见嵌入式在线视频教程——3、嵌入式Linux开发应用介绍 直流有刷电机专题-第27讲 直流有刷电机PID双环控制(电流+速度环) 4、Thread/BLE双模开发技术讲座 数据结构37